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History of Transistor Count in Microprocessors 
Moore’s law: transistor count doubles every two years

Design automation tools are required to 
build microprocessors! Source: wikipedia.org/en/transistor_count

http://wikipedia.org/en/transistor_count
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Common Design Tasks
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Define  
Microarchitecture

Logic 
Description

Logic 
Synthesis

Place &  
Route

A + B + Ci  
=> S, Co

Microprocessor



Design Optimization: An NP-Hard Problem
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Logic 
Description

Logic 
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Place &  
Route

Timing 
Analysis

Power 
Analysis

Custom 
Circuits

A + B + Ci  
=> S, Co

Microprocessor



The Problem – A haystack of design data

High-performance microprocessors 
are complicated devices. 
• Processor design is an arduous and iterative 

process. 

• Design automation is not simply “one and done.” 

• Questions are asked between each iteration: 

1. What happened? 

2. Why did it happen? 

3. How do we improve?

10

Synthesis  
& Analysis

Pile of design data

?
Ask questions

Make Changes

Iterative 
Design



The Problem – A haystack of design data

High-performance microprocessors 
are complicated devices. 
• Processor designs are separated into hierarchical 

components 

• Each of these are analyzed separately and then 
stitched back together
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2 Chips x 8 Cores x 9 Continents 
= A LOT OF DATA (41 GB*)

*sum of size of compressed DD files on disk 

IBM Telum Processor
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Design editor and  
configuration cockpit

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Key Dimensions 
1. Managing design 

versions 
2. Hierarchical 

components 
3. Access to design and 

derived data 
4. Team interlock and 

collaboration
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EDA Application Layers

Distributed Clustered File System

Design editor and configuration cockpit

Distributed Batch 
Job Scheduler 

RedHat Enterprise Linux 
(RHEL) OS x86 | POWER

Logic

Asserts

Spice

Parms



Optimization 
Engines

Analysis 
Engines

15

EDA Application Layers

Distributed Clustered File System

Synthesis Placer Router

Design editor and configuration cockpit

Sign-Off
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Design 
Data

Optimization 
Engines

Analysis 
Engines

Integrated Shell Interpreter Platform
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Design Data (DD): A CPython binary data model and API
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Floorplan forcesPlacement Density

Leakage DensitySignal Graph

Logical “Netlist”

Routing Congestion

Placement  & Wires

DD is a read-only, self-contained, binary file database

Timing
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Design Data (DD): A CPython binary data model and API

Data Models

Optimization

Analysis

EDA 
Application

Cockpit

16 CPU • 600 GB • 8 hrs



Drawbacks 

• Maintain custom Python objects 
and iterators 

• Extra layer creates additional 
complexity and maintenance. 

• Execution outside of Global 
Interpreter Lock (GIL)

Benefits 

• Smaller memory footprint and 
faster compute performance 

• Custom memory management 
and object initialization 

• Multithreading 

• Support multiple execution 
environments
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Design Data (DD): A CPython binary data model and API

Data Models

Optimization

Analysis

EDA 
Application

DD C++ library 
Context • Box • Pin • Net 

read(); write();  
trace_critical_path(); x(); y(); z();

.dd 
699MB

Cockpit

16 CPU • 600 GB • 8 hrs
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Design Data (DD): A CPython binary data model and API

Data Models

Optimization

Analysis

EDA 
Application

DD C++ library 
Context • Box • Pin • Net 

read(); write();  
trace_critical_path(); x(); y(); z();

.dd 
699MB

Cockpit

Python 
Interpreter

Jupyter 
IPython

Jupyter 
Notebook

Custom 
Scripts

CPython Wrapper Types 
Box • Pin • Net

DD 
Server

Aggregate 
Metrics 
Reports

Binary

C++

CPython

Python

Post-Analysis lib

1 CPU • 16 GB • 4m 24s16 CPU • 600 GB • 8 hrs

Drawbacks 

• Maintain custom Python objects 
and iterators 

• Extra layer creates additional 
complexity and maintenance. 

• Execution outside of Global 
Interpreter Lock (GIL)

Benefits 

• Smaller memory footprint and 
faster compute performance 

• Custom memory management 
and object initialization 

• Multithreading 

• Support multiple execution 
environments



Python vs. C++ 
CPython provides the best of both worlds!

Use Python packages for data 
analysis and management:
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Complete graph data 
model performance

• pandas (DataFrame) 

• matplotlib (pyplot) 

• websockets & asyncio 

• flask (web server) 

• tensorflow 

• scikit-learn 

• DB connectors 

• PIL (ImageDraw) 

• jupyter

Create a complete graph of: 
  10,000   vertices 
  49.99 M  edges 

Python:    6 min, 8.1 GB 
C++:    3.45 sec, 1.2 GB

Python 
• Rapid App Development 

(i.e., fast prototyping) 
• Dynamic and flexible 
• Large community for package 

development and support 
• Support C++ integrations for 

performance 

C++ 
• Fast and memory efficient 
• Strong typing 
• Multi-threading
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Use Models

Users and developers may 
access data in whichever 
form helps them accomplish 
their current task most 
effectively.
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Rare TasksCommon Tasks

Operational 
Metrics

Visual 
Discovery

Visual 
Exploration

Custom 
Experiments

24

Use C++ extension modules for 
runtime performance
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Goal: Form a mental model of the 
“whole picture”

Time

import flask, flask_restful, pandas 
class TakedownPathDeltas(flask_restful.Resource): 
    def get(self, args): 
        hists = dict() 
        for run_id in self.get_runs_list(args): 
            run_df = DataFrame(db_conn.query( 
                f'SELECT slack FROM Cache_{run_id};')) 
            bins = pandas.cut(run['slack'], self.bins) 
            hists[run_id] = run_df.groupby(bins)[‘slack’] 
                            .count().to_dict() 
        return hists 

app = flask.Flask(!"name!") 
api = flask_restful.Api() 
api.add_resource(TakedownPathDeltas,  
                 ‘/api/takedown/path_deltas')

Track progress over time 
via a flask web server and pandas



Full Hierarchical Summary 
via a websocket server
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import asyncio, websockets 
def aggregate_path_data(name): 
    path_d = defaultdict(float) 
    tpt = ctx.root_def().locate_pin(name) 
    for t in tpt.iterate_critical_trace_in(): 
        if t.is_gate: 
           path_d['gate_delay']  += t.delay() 
        elif t.is_wire: 
            path_d['wire_delay'] += t.delay() 
    return path_d 

async def handle_msg(conn, path): 
    async for msg_d in conn: 
        try: 
            res_d = aggregate_path_data(msg_d[‘name’]) 
            conn.send(res_d) 
        except Exception as e: 
            conn.send(json.dumps({'error': e})) 

ctx = dd.read(DD_FILE) 
start_server = websockets.serve(handle_msg, hostname, port) 
asyncio.get_event_loop().run_until_complete(start_server) 
asyncio.get_event_loop().run_forever()

Query DD data and compute aggregate metrics.



How do I fix it? 
Multi-cycle, multi-hierarchy path example
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Multi-latch and multi-hierarchy path

A B C

-86 ps+26 ps +90 ps

def render_path_layout(msg_d): 
    pins, wires = (list(), list()) 
    tpt = ctx.locate_pin(msg_d['name']) 
    for t in tpt.iterate_critical_trace_in(): 
        pins.append({ "coords": (t.pin().x(), t.pin().y(), t.pin().z()), }) 
        for wire in t.net().iterate_wires(): 
            wires.append({ 
              "start": [*wire.start().coords()], 
              "end":   [*wire.end().coords()] 
            }) 
    return {"pins": pins, "wires": wires}

Load and stitch all data files generated from separate hierarchical components and render path coordinates.



0   c = dd.read(DD_FILE) 
1   epts = [e for e in c.root_def().iterate_end_points() 
2           if e.worst_slack().slack() < 0] 
3   for e in epts: 
4       nboxes = 0 
5       path_vt = defaultdict(int) 
6       for ti in e.iterate_critical_trace_in(): 
7           if ti.box() "# None:  nboxes+=1 
8           if ti.vt()  "# “":    path_vt[ti.vt()] +=1 
9       traces.append({ 
10        "%{“n": nboxes, "ept": e.name() }, 
11        "%path_vt, 
12        "%{k+’%’: v / nboxes for k,v in path_vt.items()}, 
13      }) 
14  df = DataFrame(traces) 
15  df[‘slow_%’].hist()

DD, which failing data paths have slow devices?
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“DD has been invaluable in large scale data mining to identify systemic problems.”

#
 in

st
an

ce
s

gate usage ratio

Ad-hoc analysis of 
critical path gate size.



Compare hierarchy boundary  
pins between two versions

Custom analysis with pandas DataFrames and matplotlib

29“DD has been invaluable in large scale data mining to identify systemic problems.”
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Ad-hoc analysis of  
gate usage and delays.
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Analyze wire delays across  
multiple timing corners
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Automated regression testing

30

Automated regressions report 
many unexpected differences 
and significant performance 
degradation.

44.4

44.6 Revert PR for 44.4 
Original bug remains

44.11 Commit proper fix

Src 
GraphID

Dst 
GraphID

CellName Delta 
Fails

Macro 
FOM

Macro 
Fails

Detailed 
Diffs

44064
(44.3)

47009
(44.4)

TEST_A Passed Passed Passed Diffs

44065
(44.3)

47010
(44.4)

TEST_B Passed Passed Passed Passed

44066
(44.3)

47011
(44.4)

TEST_C Failed Failed Failed Failed

46520
(44.3)

47439
(44.4)

TEST_D Passed Passed Passed Diffs

Result of Jenkins build #362 

46520 47439 Delta

DD Read 21m 24s 908ms 25m 9s 977ms 3m 45s

Iterate Edges 4m 12s 465ms 6m 46s 682ms 2m 34s

Get Endpts 5m 45s 366ms 7m 51s 426ms 2m 6s

Analyze Timing Paths 6m 36s 729ms 11m 11s 741ms 4m 35s

Memory 73.859 GB 73.767 GB

Performance for 46520 (44.3) vs 47439 (44.4)



Debugging CPython applications

> gdb -p <pid> 
(gdb) bt 3     # print backtrace 
#0  0x00003fffa2a523a0 in 
levelize_tpts_forward(...) 
   from .../site-packages/designdata.cpython-38 
powerpc64le-linux-gnu.so 
(More stack frames follow...)
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Where is this runtime coming from??? 
Experiment: Attach gdb debugger to running Python process in compute cluster.

Lesson Learned:  
AVOID MANY CALLS TO TIME CONSUMING FUNCTIONS!

Automated regressions report 
many unexpected differences 
and significant performance 
degradation.

44.4

44.6 Revert PR for 44.4 
Original bug remains

44.11 Commit proper fix



Debugging CPython applications
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Where is this runtime coming from??? 
Measure performance with Python Timer (requires successful completion)

Lesson learned:  
AVOID MANY CALLS TO TIME CONSUMING FUNCTIONS!

(I): Performance Metrics:
(T):   Read DD file took 46m 24s
(T):   Build latch graph took 1m 11s
(T):   Iterate edges and assign groups took 5m 13s
(T):   Collect group summary took 10m 0s
(T):   timing_info.get_path_details took 4m 30s 
       (0h 0m 0.006s avg) with 42126 calls.

@Timer
def get_path_details(...):
"""aggregate path data"""

with Timer.getTimer(‘exp_a’):
    p = get_path_details(...)

Function Decorator Context Manager

Automated regressions report 
many unexpected differences 
and significant performance 
degradation.

44.4

44.6 Revert PR for 44.4 
Original bug remains

44.11 Commit proper fix



  startPointName         Defs_41.5           Defs_44.4 bdly_d n_gates_d totalAdjust_d 
0 XL3Q@LATC_4/QN                 -                   -      -      -6.0         -0.37 
1 _XLQ@LATC_3/QN                PI W_INVESLAT_X8M_A9TX  17.68       7.0         -0.21 
2 XL2Q@LATC_4/QN                 -                   -      -      -6.0         -0.21 
3 XL2Q@LATC_1/QN                 -                   -      -      -6.0             - 
4 INST@LATC_8/QN                 -                   -      -      -6.0             - 
5 INST@LATC_6/QN INVESLAT_X1M_A9TX  INVESLATN_X1M_A9TS -13.85      -8.0        -24.54

44.3 vs. 44.4 (272 diffs)

44.3 vs. 44.11 (2 diffs)

  startPointName         Defs_41.5          Defs_44.11 bdly_d n_gates_d totalAdjust_d 
0 _XLQ@LATC_3/QN                PI W_INVESLAT_X8M_A9TX  17.68       7.0         -0.21 
1 INST@LATC_6/QN INVESLAT_X1M_A9TX _INVESLATN_X1M_A9TS -13.85      -8.0        -24.54

pandas DataFrame “Sparse Diff”

Automated regressions report 
many unexpected differences 
and significant performance 
degradation.

44.4

44.6 Revert PR for 44.4 
Original bug remains

44.11 Commit proper fix

def sparse_diff(dfa:DataFrame, dfb:DataFrame, cols_to_compare:list, PRIMARY_KEYS:list): 
    cols_with_diffs = list() 
    mdf = pandas.merge(dfa, dfb, how='outer', on=PRIMARY_KEYS) 
    both_df = mdf[mdf['_merge']"&'both'] 
    for c in cols_to_compare: 
        if is_number_type(both_df[c+'_a'].dtype, both_df[c+'_b'].dtype): 
            both_df[c+"_d"] = both_df[c+'_a'] - both_df[c+’_b'] 
       else: 
            both_df[c+"_d"] = (both_df[c+'_a'] "# both_df[c+’_b']) 
                              .replace({True: "Diff", False: "Equal"}) 
       both_df.loc[((both_df[c+’_d’].abs() > 1e-6) | (both_df[c+'_d'] "& 'Equal')), 
                    both_df.filter(regex='^'+c+'_').columns] = '-' 
    return (cols_with_diffs, both_df)



Data Compare Performance 
Use a vectorized approach

1. Iterate over columns and compare all rows per-column "vector-wise" 
for c in dfa.columns:           
    diffs[c] = dfb[c] - dfa[c]  

2. DataFrame.compare() 
diffs = dfa.compare(dfb) 

3. Iterate over columns and rows to compare element-wise 
for c in dfa.columns:                      
    for i, ri_a in enumerate(dfa[c]):      
        diffs[c].append(dfb[c][i] - ri_a)  

4. Iterate over columns and use DataFrame.apply() to compare element-wise: 
for c in cols:                                           
    diffs[c].append(dfM.apply(                           
        lambda row: row[c+'_a'] - row[c+'_b'], axis=1)) 

34

The “vectorized” approach had more than 500x improvement 
over the other loop-based methods.
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Open Source Community Model
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Users 
• Submit Bug Reports 
• Request enhancements 
Goal: Low barrier to entry

Power Users 
• Provide help &  

answer questions 
• Create prototypes 
Goal: Easy to contribute

Influence

Maintainers 
• Support & maintain 

system 
• Set project strategy 
Goal: Long-term 
engagement

Engagement 
Time



Democratized Data Analysis

“DD makes it 
practical for 
ordinary engineers 
to perform their 
own analysis 
without specialized 
EDA help!”
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Timing 
Visualizer

Jupyter 
Prototypes

Custom 
Scripts

Ask  
Questions

Receive 
Feedback

Dev 
Team

Build 
Features

Provide 
Support

Timing 
Takedown

Power 
Users

Active 
Users

?
Weekly 

Interlock

37
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I want this!
How do I 

get it? “I TOLD THEM WE 
ALREADY GOT ONE.”
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Make one! 
Here are some references to help you get started.

Learn Python! 
Learn C or C++! 
Basic Concepts, Syntax, Grammar 

Learn CPython! 
Create a C / C++ Extension Module

Python Standard Library 
https://docs.python.org/3/library/index.html 

The Python Tutorial 
https://docs.python.org/3/tutorial/index.html 

C and C++ Standard Library 
https://en.cppreference.com/w/  
C++ Tutorial 
https://www.cplusplus.com/doc/tutorial/ 

CPython: Defining Extension Types 
https://docs.python.org/3/extending/newtypes_tutorial.html

https://docs.python.org/3/library/index.html
https://docs.python.org/3/tutorial/index.html
https://en.cppreference.com/w/
https://www.cplusplus.com/doc/tutorial/
https://docs.python.org/3/extending/newtypes_tutorial.html


What have we 
learned?

40



Significant reduction in memory footprint 

Enables data-driven design using a complete data model 

A Python interface allows engineers to apply existing 
methods from Data Science and focus on the hard problems!
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DD IS A GAME CHANGER!
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